2007 Vol. 9, No. 13 2513-2515

Photoinduced Diastereoselective Addition of Perfluoroalkyl lodides to Acrylic Acid Derivatives for the Synthesis of Fluorinated Amino Acids

Tomoko Yajima* and Hajime Nagano

Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

yajima.tomoko@ocha.ac.jp

Received March 29, 2007

ABSTRACT

Photoinduced diastereoselective addition of perfluoroalkyl iodides in the presence of an aqueous solution of $N_2S_2O_3$ was an excellent method for iodoperfluoroalkylation of acrylic acid derivatives bearing a chiral auxiliary, with moderate to good stereoselectivities and with no detectable side products. The iodoperfluoroalkylation of *N*-acyloylcamphorsultam provided a convenient route for preparing chiral fluorine-containing amino acids.

Organofluorine compounds have been receiving significant interest in materials science and medicinal chemistry.¹ Addition reactions of perfluoroalkyl iodide to carbon—carbon double bonds are efficient and versatile for the direct introduction of a perfluoroalkyl group onto organic molecules. In particular, the iodoperfluorination of acrylic acid derivatives, followed by nucleophilic substitution of the iodide with a nitrogen nucleophile, gives the corresponding fluorine-containing amino acids² (Scheme 1). However, iodofluoroalkylation reactions are limited to electron-rich alkenes.³ With electron-deficient alkenes, the formation of

undesired dimeric, telomeric, or polymeric products is frequently observed, and the desired 1:1 adduct was obtained in low yield.⁴ To the best of our knowledge, there are no

Scheme 1

$$X^*$$
: Chiral auxiliary R_f : Perfluoroalkyl iodide

reports on the asymmetric process. Thus, we investigated the diastereoselective iodoperfluoroalkylation of acrylic acid

⁽¹⁾ For a review and books, see: (a) Resnati, G. Tetrahedron 1993, 49, 9385–9445. (b) Uneyama, K. Organofluorine Chemistry, Blackwell Pub.: United Kingdom, 2006. (c) Kirsh, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; John Wiley & Sons: New York, 2004. (d) Kitazume, T.; Yamazaki, T. Experimental Methods in Organic Fluorine Chemistry; Kodansha Ltd.: Tokyo, 1998. (e) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Wiley & Sons: New York, 1990. (f) Biomedical Aspects of Fluorine Chemistry; Filler, R., Kobayashi, Y., Eds.; Kodansha Ltd.: Tokyo, 1982.

⁽²⁾ For a review and a book, see: (a) Jäckel, C.; Koksch, B. Eur. J. Org. Chem. 2005, 4483–4503. (b) Fluorine Containing Amino Acids; Kukhhar, V. P., Soloshonok, V. A., Eds.; John Wiley & Sons: New York, 1005

⁽³⁾ For a review, see: (a) Dolbier, W. R., Jr. *Chem. Rev.* **1996**, *96*, 1557–1584. Photoinduced reactions, see: (b) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. *J. Org. Chem.* **2004**, *69*, 6658–6665.

⁽⁴⁾ Radical-mediated perfluoroalkylation reactions for α-methylene esters, see: (a) Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Iyoda, M. *J. Chem. Soc.*, *Perkin Trans. I* **1991**, 627–633. (b) Qiu, Z.-M.; Burton, D. J. *J. Org. Chem.* **1995**, 60, 3465–3472 and references cited therein.

derivatives bearing a chiral auxiliary and report herein that the reaction proceeded smoothly in the presence of an aqueous solution of Na₂S₂O₃ under UV irradiation in CH₂-Cl₂. We also report that the iodoperfluoroalkylation of an acrylic amide bearing camphorsultam proceeded with high diastereoselectivity, and the adduct was readily converted to the corresponding chiral fluorinated amino acid.

Table 1 summarizes the initial studies using perfluorohexyl

Table 1. Screening of Iodoperfluorohexylation Reaction Conditions Using Substrate 1^a

$$\underbrace{\frac{n\text{-}C_6F_{13}I}{\text{solvent}}}_{\text{Hg lamp}} \underbrace{\frac{n\text{-}C_6F_{13}I}{\text{solvent}}}_{\text{2}} \underbrace{\frac{n\text{-}C_6F_{13}I}{\text{3}}}_{\text{3}}$$

entry	n-C ₆ F ₁₃ I (equiv)	time (h)	solvent (mol/L) ^c	2 ^b (%)	3 (%)
1	1.2	6	noot	22	
1	1.2	O	neat	22	_
2	1.2	6	BTF (1.0)	13	_
3	1.2	6	benzene (1.0)	4	_
4	1.2	6	$\mathrm{CH_2Cl_2}\left(1.0\right)$	37	_
5	1.2	24	$CH_2Cl_2\left(0.1\right)$	32	19
6	1.2	24	$CH_2Cl_2\left(0.04\right)$	40	21
7	2.0	24	$CH_2Cl_2\left(0.04\right)$	68	14
8	5.0	6	$CH_2Cl_2\left(0.04\right)$	56	8
9	5.0	24	$CH_2Cl_2\left(0.04\right)$	76	13
10	10.0	24	$CH_2Cl_2\left(0.04\right)$	83	8
11^d	10.0	1	$CH_{2}Cl_{2}\left(0.04\right)$	91	_

^a The reaction was carried out under irradiation with a Hg lamp in a Pyrex tube at rt. ^b Diastereomer ratio of **2a** was 50:50. ^c Molarity in **1**/solvent. ^d In the presence of a solution of Na₂S₂O₃ (5 equiv) in water (0.01 mol/L).

iodide and menthyl acrylate 1,5 which are easy to handle compared with simple volatile acrylates. All reactions were carried out under photoirradiation with a Hg lamp in a Pyrex tube. In the absence of solvent, the reaction gave the desired product 2, formed by the attack of a perfluoroalkyl radical on the β -carbon of the acrylate as reported by Qiu et al., ^{4b} in 22% yield (entry 1). Benzotrifluoride (BTF), benzene, and CH₂Cl₂ were used as solvents, and the best yield was obtained in CH₂Cl₂ (entries 2–4). Dilute reaction conditions gave higher yields, but longer reaction times gave olefinic side product 3 (entries 5 and 6). A large excess of perfluorohexyl iodide increased the yield of 2 up to 83% (entries 7-10). From the experimental observations: (1) the reaction slowed as time passed, and the starting material was recovered, even when a large excess of iodide was used; and (2) the reaction mixture became pink after irradiation, and it is thought that iodine, which is a byproduct, retarded the addition reaction. Thus, to trap the iodine, an aqueous solution of Na₂S₂O₃ was added to the reaction mixture, and the reaction was completed within 1 h to give a 91% yield without any side products (entry 11). However, in all cases, the reactions were nondiastereoselective.

We next investigated the iodoperfluoroalkylations of acrylic acid derivatives bearing chiral auxiliaries (4,⁶ 6,⁷ 8,⁸ 10,⁹ and 12,¹⁰ shown in Table 2) under the same conditions

Table 2. Iodoperfluoroalkylation of Acrylic Acid Derivatives Bearing Chiral Auxiliaries¹¹

entry	substrate	$R_f I$	time (h)	product	yield (%)	dr ^a
1	Ph \ 0 \ 0 \ 4	<i>n</i> -C ₆ F ₁₃ I	1	5	80	50:50
2	★	<i>n</i> -C ₆ F ₁₃ I	1	7	82	60:40
3	Ph O	<i>n</i> -C ₆ F ₁₃ I	1	9	87	76:24
4	Bn 0 0 10	<i>n</i> -C ₆ F ₁₃ I	1.5	11	69	76:24
5	S-N 02 0	n-C ₆ F ₁₃ I n-C ₃ F ₇ I i-C ₃ F ₇ I C ₂ F ₅ I CF ₃ I	1.5 2.5 2.0 2.5 5.0	13 14 15 16 17	73 73 75 68 63	77:23 81:19 83:17 79:21 80:20

^a Diastereoselectivities were determined by ¹H NMR. The relative configurations of products **5**, **7**, **9**, and **11** were not determined. The stereochemistries of the major diastereomer of **13−17** were (2*S*) (see ref 13)

as entry 11 in Table 1¹¹ (Table 2). All of the substrates smoothly reacted with perfluorohexyl iodides to give the corresponding iodoperfluorohexyl products in good yields. Acrylates 4 gave no diastereoselectivity, and 6 gave low diastereoselectivity (entries 1 and 2). Both 8 and 10 gave a diastereoselectivity of 76:24 (entries 3 and 4). Although the chelation controlled reaction of 10 using Mg(ClO₄)₂ as a

⁽⁵⁾ Lee-Ruff, E.; Xi, F.; Qie, J. H. J. Org. Chem. 1996, 61, 1547-1550.

⁽⁶⁾ Maruoka, K.; Akakura, M.; Saito, S.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 6153-6158.

⁽⁷⁾ Hansen, M. M.; Bertsch, C. F.; Harkness, A. R.; Huff, B. E.; Hutchison, D. R.; Khau, V. V.; LeTourneau, M. E.; Martinelli, M. J.; Minster, J. W.; Peterson, B. C.; Rieck, J. A.; Sullivan, K. A.; Wright, I. G. *J. Org. Chem.* **1998**, *63*, 775–785.

⁽⁸⁾ Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.; Chen, H. H.; Deyo, D.; James, D.; Liu, C.-L.; Minton, M. A. *Tetrahedron* **1986**, *42*, 2993–3001.

⁽⁹⁾ Xiao, D.; Vera, M. D.; Liang, B.; Joullié, M. M. J. Org. Chem. 2001, 66, 2734–2742.

⁽¹⁰⁾ Clark, W. M.; Bender, C. J. Org. Chem. 1998, 63, 6732-6734.

Lewis acid¹² was attempted, the stereoselectivity did not increase. *N*-Acyloylcamphorsultam **12** gave a diastereoselectivity of 77:23, and the diastereomers were easily separated by column chromatography (entry 5). Then, reactions of **12** with various perfluoroalkyl iodides were performed, and easily separable diastereomer mixtures of **14–17** were obtained, respectively.¹³

Finally, we synthesized fluorine-containing amino acids **20** and **21** using the major diastereomers of products **14** and **16**, respectively, as starting materials (Scheme 2). Azide

Scheme 2

NaN₃, DMF

NaN₃, DMF

14 (major)

18 (
$$R_f = n\text{-}C_3F_7$$
); 82%

19 ($R_f = C_2F_5$); 88%

1) LiOH-H₂O, THF

2) H₂, Pd/C, AcOH

HO₂C

NH₂

20 ($R_f = n\text{-}C_3F_7$); 67%

21 ($R_f = C_2F_5$); 63%

displacement proceeded with inversion of configuration, ¹⁴ and the azides **18** and **19** were obtained in good yields without any loss of stereochemical purity. The removal of the sultam auxiliary via hydrolysis ¹⁵ afforded α -azidocar-

boxylates. Finally, hydrogenation of the azide group by a standard method ¹⁶ gave (S)-4,4,5,5,6,6,6-heptafluoronorleucine ($\mathbf{20}$) ^{14b} in 67% yield and (S)-4,4,5,5,5-pentafluoronorvaline ($\mathbf{21}$) ^{14b} in 63% yield for two steps. The absolute configurations were determined by comparing the specific rotations of the α -azidocarboxylates with the reported values. ^{14b} The enantiomeric excesses of $\mathbf{20}$ and $\mathbf{21}$ were determined to be 94% ee and 92% ee, respectively, by analyzing the ¹H NMR spectrum of the Mosher amide of the corresponding amino acids. ^{14b}

In conclusion, we reported the diastereoselective iodoperfluoroalkylation of acrylic acid derivatives and the asymmetric synthesis of fluorine-containing amino acids. In the presence of an aqueous solution of Na₂S₂O₃, the iodoperfluoroalkylation proceeded with excellent yield and with moderate to good stereoselectivities. (*S*)-4,4,5,5,6,6,6-Heptafluoronorleucine (20) and (*S*)-4,4,5,5,5-pentafluoronorvaline (21) were synthesized on the basis of the diastereoselective iodoperfluoropropylation of *N*-acyloylcamphorsultam 12. This route is a new and efficient asymmetric method for the synthesis of fluorinated amino acids, and the synthesis of various fluorinated amino acids is currently in progress.

Supporting Information Available: General experimental procedures and characterization data for compounds 2, 3, 5, 7, 9, 11, and 13–21. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0707620

Org. Lett., Vol. 9, No. 13, 2007

⁽¹¹⁾ General procedure for the photoinduced addition reaction is as follows: In a Pyrex glass tube were placed the olefin (0.2 mmol), perfluoroalkyl iodide (2.0 mmol), and CH_2Cl_2 (5 mL). Then, $Na_2S_2O_3$ (158 mg, 1 mmol) and water (1 mL) were added. After sealing the tube, the mixture was mixed by shaking and then irradiated with a Hg lamp at room temperature. After the reaction was completed, the products were extracted with CH_2Cl_2 . The extract was washed with brine, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to afford pure product.

⁽¹²⁾ Yang, D.; Gao, Q.; Lee, O.-Y. Org. Lett. 2002, 4, 1239–1241.

⁽¹³⁾ The absolute configurations of **14** and **16** were determined after being transformed into the corresponding known α -azidocarboxylates and comparing the specific rotations with the reported values. ^{14b} The stereochemistries of **13**, **15**, and **17** were determined by comparing the chemical data with those of **14** and **16**. The stereochemical feature of the reaction of **12** can be rationalized in terms of the stereoselectivities of the radical allylation reactions of **12**. See: Curran, D. P.; Shen, W.; Zhang, J.; Heffner, T. A. *J. Am. Chem. Soc.* **1990**, *112*, 6738–6740.

⁽¹⁴⁾ Azide displacement of the halogen attached to the α-carbon to the carbonyl proceeded with inversion of configuration. See: (a) Labelle, M.; Morton, H. E.; Guindon, Y.; Springer, J. P. *J. Am. Chem. Soc.* **1988**, *110*, 4533–4540. (b) Larsson, U.; Carlson, R.; Leroy, J. *Acta Chem. Scand.* **1993**, *47*, 380–390.

⁽¹⁵⁾ Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. 1999, 1, 569-572.

⁽¹⁶⁾ Pearson, A. J.; Lee, K. J. Org. Chem. 1995, 60, 7153-7160.